Generation, Detection and Characterization of Photonic Quantum States

Ivo Straka

Quantum Optics Lab Olomouc, Department of Optics, Faculty of Science, Palacký University Olomouc, Czechia

The first part of the talk is about witnessing quantum non-Gaussian (QNG) properties of single-photon and multiphoton light using multi-channel detectors. QNG is a quantum property of photon-number states, which stands between nonclassicality and Wigner function negativity. First, we measured the QNG loss tolerance of heralded single-photon states generated by parametric processes and quantum dots [1]. Then we generated multiphoton light in multiple heralded modes, and verified QNG for up to 9 photons [2]. Finally, we generalized the concept of QNG, focusing on genuine presence of higher photon-number states, and witnessed *genuine* QNG of the first to third order [3].

The second part presents experimental ways of generating given photon statistics and temporal correlations. We employed a programmable intensity modulation and a simple Mandel formula inversion to obtain any given classical photon-number distribution p_n [4]. We demonstrated an accuracy of $\delta p_n < 10^{-3}$ and generation of a heavy-tailed distribution for up to 500 photons. Then, we proposed two methods of intensity modulation to obtain a given shape of the $g^{(2)}$ auto-correlation [5]. The first method was demonstrated experimentally to yield general cross-correlation shapes. The second method only permits convex shapes, but features independent tailoring of both photon statistics and temporal correlations.

The third part is dedicated to metrology of single-photon detectors. We formulated a detailed point process model for actively quenched single-photon avalanche diodes and verified it experimentally [6]. While we reached record precision in modelling the counting statistics, we also discovered unknown non-Markovian or non-stationary behaviour. In the most recent work, we demonstrated a direct single-source method for measuring nonlinearity of single-photon detectors [7]. The results identified new supra-linear regimes for both avalanche diodes and superconducting nanowires.

- I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip, Quantum non-Gaussian Depth of Single-Photon States, Physical Review Letters 113, 223603 (2014).
- [2] I. Straka, L. Lachman, J. Hloušek, M. Miková, M. Mičuda, M. Ježek, and R. Filip, Quantum non-Gaussian multiphoton light, npj Quantum Information 4, 1–5 (2018).
- [3] L. Lachman, I. Straka, J. Hloušek, M. Ježek, and R. Filip, Faithful Hierarchy of Genuine *n*-Photon Quantum Non-Gaussian Light, Physical Review Letters **123**, 043601 (2019).
- [4] I. Straka, J. Mika, and M. Ježek, Generator of arbitrary classical photon statistics, Optics Express 26, 8998– 9010 (2018).
- [5] I. Straka and M. Ježek, Shaping the g⁽²⁾ autocorrelation and photon statistics, Physical Review A 103, 023717 (2021).
- [6] I. Straka, J. Grygar, J. Hloušek, and M. Ježek, Counting Statistics of Actively Quenched SPADs Under Continuous Illumination, Journal of Lightwave Technology 38, 4765–4771 (2020).
- [7] J. Hloušek, I. Straka, and M. Ježek, Experimental observation of anomalous supralinear response of singlephoton detectors, ArXiv e-prints (2021), 2109.08347.