Exploring the limits of magnetism in two-dimensional materials

Nov24Tue

Exploring the limits of magnetism in two-dimensional materials

Tue, 24/11/2020 - 15:00 to 16:00
Speaker: 
Dr Elton Santos
Affiliation: 
University of Edinburgh
Synopsis: 

The family of 2D compounds has grown almost exponentially since the discovery of graphene and so too the rapid exploration of their vast range of electronic properties. Some family members include superconductors, Mott insulators with charge-density waves, semimetals with topological properties, and transition metal dichalcogenides with spin-valley coupling. Among several compounds, the realization of long-range ferromagnetic order in van der Waals (vdW) layered materials has been elusive till very recently. Long searched but only now discovered 2D magnets are one of the select group of materials that retain or impart strongly spin correlated properties at the limit of atomic layer thickness. In this presentation I will discuss how different layered compounds (e.g. CrX3 (X=F, Cl, Br, I), VI3, MnPS3, Fe3GeTe2, FePS3, CrGeTe3) can provide new playgrounds for exploration of spin correlations involving quantum-effects, topological spin-excitations and higher-order exchange interactions. I will show that this new generation of vdW magnets can help to revolutionize several technological applications from sensing to data storage, which can lead to new magnetic, magnetoelectric and magneto-optic applications in industry. Moreover, I will discuss some challenges at the forefront of 2D vdW magnets and new opportunities to understand fundamental problems.

Institute: